抽签先抽和后抽概率是一样的. 因为每一只签被抽到的可能性没有变化,
与先抽和后抽的顺序无关,所以抽签先抽和后抽概率是一样的.
抽签时先抽和后抽中签的几率是均等的。不管怎么抽签,最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,所以中签的可能性必然是相等的。
抽签时中签的几率均等,不管谁先抽都是公平的。我们索性用一个一般情况来证明,假设总共有n个签,而其中m个是“中”的。第一个人抽中的机会显然是m/n。
我们知道从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法;而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关,不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
两种情况。
若先抽放回,则保证总数一样。抽中概率为相同的。如:共有三个球,前者抽中奖概率为:1/3.后者抽中奖概率为:1/3
若先抽不放回,若先抽者没中,则后抽者抽中概率更大。如:共有三个球,只有一个球中奖,前者抽中奖概率为:1/3.后者抽中奖概率为:1/2
相等。
抽签不管谁先抽都是相等公平的。不管这些人怎么抽签,他们最后抽出来的结果无非是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必然是相等的。
在工作和生活之中,我们还会遇到一类和抽签很像的事情,但这类问题与抽签问题并不相同。比如在公司开会或者团建的时候,领导经常会出其不意提出一些烧脑的问题,而面对这些问题,我们首先应该弄清的是先回答还是后回答。
计算验证:
从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这就是我们总的样本空间。在这些排列中,要确保第二个人中签,他一共有m种抽法。
而这样第一个人可以从剩下的n-1个签中任意选择,故确保第二个人抽中的方法一共有m(n-1)种。于是“第二个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
因为即使第一个抽的抽到有物签,另一人还是有机会
先抽抽到有物签几率为2/5
后抽抽到有物签几率:若先抽抽到有物签则有1/4,若先抽抽到白签,有1/2
因为几个人同时抽奖,盒子里面很多个小球,几个人同时抽奖,同时拿起。
球的总数没有改变,奖品的数量也没有变。
所以中奖的概率也没变。
免费分享十二生肖和星座知识,如侵权请告知删除
本文链接: https://chamadao.com/sx/1ty1267379.html